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We present a new short-time approximation scheme for evaluation of decoher-
ence. At low temperatures, the approximation is argued to apply at intermediate
times as well. It then provides a tractable approach complementary to Markovian-
type approximations, and appropriate for evaluation of deviations from pure
states in quantum computing models.
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1. INTRODUCTION

Consider a microscopic quantum system with the Hamiltonian HS. We will
refer to the quantum-computing single quantum bit (qubit) or multi-qubit
paradigm to help define the questions and set up the challenges, in describ-
ing how the system, S, interacts with the surrounding macroscopic world.
However, in principle S can be any quantum system.

Interactions with the surroundings can be quite different depending
on the setting. For example, in quantum measurement, which for orthodox
quantum theory is not fully understood, the wavefunction of the system is
probed, so part of the process would involve a strong interaction with the
measuring device, such that the system’s own Hamiltonian plays no role
in the process. However, in most applications, the external interactions are
actually quite weak. Furthermore, the aim is to minimize their effect, espe-
cially in quantum computing.



Traditionally, interactions with the surrounding world have been
modeled by the modes of a bath, B, with each mode described by its
Hamiltonian MK, so that the bath of modes is represented by

HB=C
K

MK. (1.1)

The interaction, I, of the bath modes with the system S, will be modeled by

HI=LSPB=LS C
K

JK, (1.2)

where LS is some Hermitean operator of S, coupled to the operator PB of
the bath.

The bath, or ‘‘heat bath,’’ can be a collection of modes, such as photons,
phonons, spins, excitons, etc. For a bosonic bath of oscillators, (1–6) which we
use for derivation of specific results, we take

MK=wKa†
KaK, (1.3)

JK=gg
KaK+gKa†

K. (1.4)

Here we have assumed that the energy of the ground state is shifted to zero
for each oscillator, and we work in units such that (=1.

The total Hamiltonian of the system and bath is

H=HS+HB+HI. (1.5)

More generally, the interaction, (1.2), can involve several system operators,
each coupling differently to the bath modes, or even to different baths. The
bath modes, in turn, can be coupled to specified external objects, such as
impurities.

Let r(t) represent the reduced density matrix of the system at time
t \ 0, after the bath modes have been traced over. For large times, the
effect of the environment on a quantum system that is not otherwise
externally controlled, is expected to be thermalization: the density matrix
should approach

r(t Q .)=
exp( − bHS)

TrS [exp( − bHS)]
, (1.6)

where b — 1/kT. At all times, we can consider the degree to which the
system has departed from coherent pure-quantum-state evolution. This
departure is due to the interactions and entanglement with the bath. We
also expect that the temperature, T, and other external parameters that
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might be needed to characterize the system’s density matrix, are determined
by the properties of the bath, which in turn might interact with the rest of
the universe.

Let us introduce the eigenstates of HS,

HS |nP=En |nP, (1.7)

and have DE denote the characteristic energy gap values of S. We also
consider the matrix elements of r(t),

rmn(t)=Om| r(t) |nP. (1.8)

For large times, we expect the diagonal elements rnn to approach values
proportional to e−bEn, while the off-diagonal elements, rm ] n, to vanish.
These properties can be referred to as thermalization and decoherence in
the energy basis, though ‘‘thermalization’’ in the strong sense of (1.6)
implies decoherence.

To establish these thermalization and decoherence properties, several
assumptions are made regarding the system and bath dynamics. (1–11) At
time t=0, it is usually assumed that the bath modes, K, are thermalized,
i.e., have density matrices

hK=e−bMK/ TrK (e−bMK ). (1.9)

The density matrix R of the system plus bath at time t=0 is assumed to be
the direct product

R(0)=r(0) D
K

hK, (1.10)

and the system and bath modes are not entangled with each other.
Now, a series of assumptions are made, e.g., the Markovian and

secular approximations. The most important is the Markovian approxima-
tion, which, even though it can be stated and introduced in various ways,
essentially assumes that the density matrices of the bath modes are reset
externally to the thermal ones, on time scales shorter than any dynamical
times of the system interacting with the bath, and the product form of the
full density matrix is maintained. This is a natural assumption, because
each bath mode is coupled only weakly to the system, whereas it is
‘‘monitored’’ by the rest of the universe and kept at temperature T. In
its straightforward version, this amounts to using (1.10) for times t > 0.
Ultimately, such approaches aim at master equations for the evolution
of rmn(t) at large times, consistent with the Golden Rule and with the
expected thermalization and decoherence properties.
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In variants of these formalisms, several time scales are identified. One
is the inverse of the upper cutoff, Debye frequency of the bath modes,
1/wD. Another is the thermal time (/kT=b (in units of (=1). The system
S has its own characteristic time, 1/DE, as well as the system-bath dynam-
ical times of thermalization and decoherence, etc., T1, 2,..., corresponding to
the ‘‘intrinsic’’ NMR/ESR times T1, T2, etc. Heuristically, bath modes of
frequencies w comparable to DE are needed to drive thermalization and
decoherence. Initial decoherence can be also mediated by the modes near
w=0. At low temperatures, we can assume that 1/wD < 1/DE < b.

There is evidence (7, 11, 12) that at low temperatures, the Markovian-type
and other approximations used in the derivation of equations for thermal-
ization and decoherence, are only valid for times larger than the thermal
time scale b. For quantum computing applications, in solid-state semicon-
ductor-heterostructure architectures, (13–19) we expect temperatures of several
tens of mK. The thermal time scale then becomes dangerously close to the
external single-qubit control, Rabi-flip time even for slower qubits, those
based on nuclear spins. We emphasize that not all the approximation
schemes have this problem. (11)

In Section 2, we offer additional comments on decoherence and
quantum computing. Then, in Section 3, we develop a short-time-decoher-
ence approximation. In a discussion at the end of Section 3, we offer
arguments that, at low temperatures, our approximation is actually valid
for intermediate times, larger than 1/wD, hopefully up to times comparable
or larger than 1/DE. Specific results for the bosonic heat bath are pre-
sented in Section 4. Section 5 comments on the case of adiabatic decoher-
ence, when the short-time approximation becomes exact.

2. DECOHERENCE AND QUANTUM COMPUTING

Quantum computing architectures usually emphasize systems, both the
qubits and the modes that couple them (and at the same time act as a bath
mediating unwanted coupling to the rest of the universe), that have large
spectral gaps. It is believed that, especially at low temperatures, spectral
gaps slow down relaxation processes. Therefore, quantum computing
architectures usually assume (13–19) qubits in quantum dots, or in atoms,
or subject to large magnetic fields, and coupled by highly nondissipative
quantum media. (14, 19)

The spectral gaps are expected to slow down exponentially, by the
Boltzmann factor, the processes of thermalization, involving energy
exchange. Off-shell virtual exchanges, will be also slowed down, but less
profoundly. The latter processes contribute to decoherence. Therefore, at
low temperatures, we might expect separation of time scales of the initial
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decoherence vs. later-stage thermalization and further decoherence. The
latter two processes are described by the traditional NMR/ESR intrinsic T1

and T2, respectively.
Since only thermalization is clearly associated with the energy eigen-

basis, one can also ask whether the energy basis is the appropriate one to
describe decoherence for short and intermediate times, before the thermal-
izing processes, that also further drive decoherence, take over. The issue of
the appropriate basis for studying decoherence, has also come up in models
of quantum measurement. It has been argued (20–24) that the eigenbasis of
the interaction operator, LS, may be more appropriate for intermediate
times than the energy eigenbasis.

Yet another aspect of decoherence in quantum computing, involves
the observation that we really want to retain a pure state in the quantum
computation process. (25–30) Decay of off-diagonal matrix elements, in
whatever basis, might not be the best measure of deviations from the pure-
state density matrix, where by pure states we mean those with density
matrices that are projection operators |kPOk|. For instance, the deviation
of TrS [r2(t)] from 1, may be more appropriate, and is easer to calculate
than other measures, specifically those motivated by the ‘‘entropic’’
expressions proportional to TrS [r ln (r)] . Therefore, it is desirable to
have basis-independent expressions for the reduced density operator r(t).

Recently, several groups have reported (12, 19, 24, 31–41) results for spin
decoherence in solid state systems appropriate for quantum computing
architectures. Some of these works have not invoked the full battery of the
traditional approximations, Markovian and secular, etc., or have utilized
the spectral gap of the bath modes, to achieve better reliability of the short-
time results. In ref. 41, interaction of the spin-exciton bath modes with
impurities was accounted for, as the main mechanism of decoherence. In
the present work, we limit ourselves to the bath modes only interacting
with the system. Experimental efforts are picking up momentum, with the
first limited results available (42, 43) by traditional NMR/ESR techniques,
with the quantum-computing emphasis.

An approach, termed adiabatic decoherence, has been developed by
us, (24) expanding the earlier works, (12, 31–33) with the goal of avoiding the
ambiguity of the basis selection and achieving exact solvability. The price
paid was the assumption that HS is conserved (a particular version of the
quantum nondemolition processes), which is equivalent to requiring that

[HS, H]=[HS, LS]=0 (adiabatic case). (2.1)

This makes the eigenbasis of HS and LS the same, but precludes energy
relaxation, thus artificially leaving only energy-conserving relaxation
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pathways that contribute to decoherence. We will comment on the results
of this approach in Section 5.

Most of the results referred to earlier, have involved approximations
of one sort or another. The most popular and widely used approximation
has been the second-order perturbative expansion in the interaction
strength, HI, though some nonperturbative results have also been reported.
In Section 3, we describe a novel approximation scheme (44) that is valid for
short times. It has several advantages, such as becoming exact in the adia-
batic case, allowing derivation of several explicit results, and, at least in
principle, permitting derivation of higher-order approximations. Certain
models of quantum measurement evaluate decoherence by effectively
setting HS=0. Our approximation then becomes exact, and our results are
consistent with these studies. (45, 46)

Our formulation in Section 3, will be quite general, and we will not use
the specific bath or thermalization assumptions. However, we do utilize the
factorization property (1.10) at time t=0. Thus, we do have to assume
that, at least initially, the system and the bath modes are not entangled. In
fact, the present formulation also relies on that the Hamiltonians at hand
are all time-independent. Therefore, we have excluded the possibility of
controlled dynamics, in the quantum computing sense, when gate functions
are accomplished by external couplings to individual qubits and by external
control of their pairwise interactions. Our formulation, therefore, applies to
‘‘idling’’ qubits or systems of (possibly interacting) qubits. It is reasonable
to assume that a lower limit on decoherence rate can be evaluated in such
an idling state, even though for quantum error correction, qubits otherwise
idling, might be frequently probed (measured) and entangled with ancillary
qubits. (25–30)

The t=0 factorization assumption (1.10), shared by all the recent spin-
decoherence studies, then represents the expectation that external control by
short-duration but large externally applied potentials, measurement, etc.,
will ‘‘reset’’ the qubits, disentangling them from the environment modes to
which the affected qubits are only weakly coupled. Thus, we assert that it is
the qubit system that gets approximately reset and disentangled from the
bath towards time t=0, instead of the bath being thermalized by the rest of
the universe, as assumed in Markovian approximation schemes.

3. SHORT-TIME DECOHERENCE

In addition to the energy basis, (1.7), we also define the eigenstates of
the interaction operator LS, by

LS |cP=lc |cP, (3.1)
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where the Greek index labels the eigenstates of LS, with eigenvalues lc,
while the Roman indices will be used for the energy basis, and, when capi-
talized, for the bath modes, (1.2)–(1.4).

The time dependence of the density matrix R(t) of the system and
bath, is formally given by

R(t)=e−i(HS+HB+HI ) tR(0) e i(HS+HB+HI ) t. (3.2)

We will utilize the following approximate relation for the exponential
factors, as our short-time approximation,

e i(HS+HB+HI ) t+O(t3)=e iHS t/2 e i(HB+HI ) t e iHS t/2. (3.3)

This relation has the following appealing properties. It becomes exact for
the adiabatic case, (2.1). Furthermore, if we use the right-hand side and its
inverse to replace e± iHt, then we are imposing three time-evolution-type
transformations on R(0). Therefore, the approximate expression for R(t)
will have all the desired properties of a density operator. Finally, extensions
to higher-order approximations in powers of t are possible, by using rela-
tions derived in ref. 47, where various expressions valid to O(t4) and O(t5)
were considered.

Our goal is to evaluate the resulting approximation to the matrix
element,

rmn(t)=TrBOm| e−iHS t/2 e−i(HB+HI ) t e−iHS t/2R(0) e iHS t/2 e i(HB+HI ) t e iHS t/2 |nP.
(3.4)

First, we apply the operators HS in the outer exponentials, acting to the left
on Om|, and to the right on |nP, replacing HS by, respectively, Em and En.
We then note that the second exponential operator in (3.4) contains LS, see
(1.2). Therefore, we insert the decomposition of the unit operator in the
system space, in terms of the eigenbasis of LS, before the second exponen-
tial, and one in terms of the eigenbasis of HS after it. This allows us to
apply LS in the second exponential and also HS in the third exponential.
The same substitution is carried out on the other side of R(0), with the
result

rmn(t)= C
c p q d

TrB
5e−iEm t/2 Om | c POc | pP e−i(HB+lcPB ) t e−iEp t/2rpq(0)

×1D
K

hK
2 e iEq t/2 e i(HB+ldPB ) t Oq | dPOd | nP e iEn t/26 . (3.5)
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The next step is to collect all the terms, and also identify that the trace
over the bath can be now carried out for each mode separately. We use
(1.1) and (1.2) to write

rmn(t)= C
c p q d

3e i(Eq+En − Ep − Em ) t/2 Om | cPOc | pP rpq(0) Oq | dPOd | nP

× D
K

TrK [e−i(MK+lc JK ) t hK e i(MK+ld JK ) t]4 . (3.6)

While this expression looks formidable, it actually allows rather straight-
forward calculations in some cases. Specifically, the simplest quantum-
computing applications involve two-state systems. Then the sums in (3.6)
are over two terms each. The calculations involving the overlap Dirac
brackets between the eigenstates of HS (labeled by m, n, p and q) and of LS

(labeled by c and d), as well as the energy-basis matrix elements of r(0),
cf. (1.8), involve at most diagonalization of two-by-two Hermitean matrices.
Of course, the approximation (3.6) can be used for evaluation of short-time
density matrices for systems more general than two-state.

The challenging part of the calculation involves the trace over each
mode of the bath. Since these modes have identical structure, e.g., (1.3) and
(1.4) for the bosonic bath case, but with K-dependent coupling constants,
the calculation needs only be done once, in the space of one mode.
Furthermore, results for the bath models ordinarily used, such as the
bosonic and spin baths, are either already available in the literature or can
be calculated without much difficulty. For the thermalized initial bath-
mode density matrix hK, we give the exact bosonic-model expression in the
next section.

In the remainder of this section, we first further analyze the trace over
one bath mode entering (3.6). We then comment on the limits of validity of
the present approximation.

In an obvious shorthand notation, we write the single-mode trace in
(3.6) as

Tr[e−i(M+cJ) t he i(M+dJ) t]=Tr[he i(M+dJ) t e−i(M+cJ) t]. (3.7)

Now, to the same order of approximation as used in (3.3), we can write

e i(M+dJ) t+O(t3)=e iMt/2 e idJt e iMt/2. (3.8)

The resulting approximation for the trace (3.7) reads

Tr[(e−iMt/2 he iMt/2) e i(d − c) Jt], (3.9)
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which illustrates that, within this approximation, the product of traces in
(3.6) is a function of the difference lc − ld. In fact, this product is exactly 1
for lc=ld and, in most applications, the following form is likely to
emerge,

D
K

TrK[ · · · ]=e−const(lc − ld)2 t2+O(t3), (3.10)

though we caution the reader that (3.10) is somewhat speculative and
suggested by the exact result for the bosonic heat bath, reported in the next
section.

Finally, we point out that in most cases of interest, the initial single-
mode density matrix h will commute with the bath-mode energy operator M.
In fact, the thermalized h is a function of M. Therefore, (3.9) can be further
simplified to

Tr[he i(d − c) Jt]. (3.11)

However, let us emphasize that the approximate relations (3.9)–(3.11)
are likely of value only as far as they help to derive basis-independent
(operator) approximations to r(t), by a technique illustrated in the next
section. Indeed, for most bath models it is advisable to calculate the single-
mode trace exactly first, according to (3.6), and then attempt various
approximations.

The latter statement reflects our expectation that the approximation
developed here is valid, for low temperatures, not only for short times,
defined by t < 1/wD, but also for intermediate times, exceeding 1/wD. This
is suggested by the result of an illustrative calculation in the next section,
but mainly by the fact that (3.11) only includes the bath-mode energy scales
via h, and, therefore, at low temperatures, is dominated by the lowest bath-
mode excitations, and is not sensitive to frequencies of order wD. Thus,
we expect our approximation to be applicable complementary to the
Markovian-type approximations and definitely break down in the regime
of fully developed thermalization, for t \ O(b). Additional supporting
observations are offered in Section 5, when we consider the adiabatic
case (2.1).

4. THE BOSONIC HEAT BATH

In this section, we consider the bosonic heat bath, (6) see (1.3) and (1.4),
in the initially thermalized state,

hK=e−bMK/TrK(e−bMK )=(1 − e−bwK ) e−bwKa†
KaK. (4.1)
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The product of the single-mode traces in (3.6), is then available in the
literature, (12, 24, 31)

rmn(t)= C
c p q d

3e i(Eq+En − Ep − Em ) t/2 Om | cPOc | pPOq | dPOd | nP rpq(0)

× exp 1− C
K

|gK |2

w2
K

52(lc − ld)2 sin2 wKt
2

coth
bwK

2

+i(l2
c − l2

d)(sin wKt − wKt)624 . (4.2)

The last term in the exponent, linear in t, is usually viewed as ‘‘renor-
malization’’ of the system energy levels due to its interaction with the bath
modes. It can be removed by adding the term,

HR=L2
S C

K
|gK |2/wK, (4.3)

to the total Hamiltonian. However, the usefulness of this identification
for short times is not clear, and we will not use it. One can check that,
unmodified, (4.2) is consistent with the expectation (3.10).

Let us now define two non-negative real spectral sums, B(t) and C(t),
over the bath modes,

B2(t)=8 C
K

|gK |2

w2
K

sin2 wKt
2

coth
bwK

2
, (4.4)

C(t)=C
K

|gK |2

w2
K

(wKt − sin wKt). (4.5)

When converted to integrals over the bath mode frequencies, with the
cutoff at wD, these sums have been discussed extensively in the litera-
ture, (6, 12, 31) for several choices of the bath mode density of states and
coupling strength g as functions of the mode frequency.

The final expression is,

rmn(t)= C
c p q d

{e i(Eq+En − Ep − Em ) t/2 Om | cPOc | pPOq | dPOd | nP rpq(0)

× exp[ − 1
4 B2(t)(lc − ld)2 − iC(t)(l2

c − l2
d)]}. (4.6)

When the spectral functions are expanded in powers of t, this result con-
firms all the conclusions and conjectures discussed in Section 3, in connec-
tion with relations (3.9)–(3.11).

966 Privman



Let us now turn to the derivation of the basis-independent representa-
tion for r(t), by utilizing the integral identity

`p exp[− B2(Dl)2/4]=F
.

−.

dy e−y 2
exp[iyB(Dl)]. (4.7)

Exponential factors in (4.6) can then be reproduced by applying operators
on the wavefunctions entering the overlap Dirac brackets, with the result

`p r(t)=F dy e−y 2
e−iHS t/2 e i[yB(t) LS − C(t) L

2
S] e−iHS t/2 r(0)

× e iHS t/2 e−i[yB(t) LS − C(t) L
2
S] e iHS t/2. (4.8)

Within the O(t2) approximation (3.3), given that B and C are of order
linear or higher in t, we can combine the exponential operators to get an
alternative approximation,

`p r(t)=F dy e−y 2
e−i[tHS − yB(t) LS+C(t) L

2
S] r(0) e i[tHS − yB(t) LS+C(t) L

2
S], (4.9)

though (4.6) and (4.8) are in fact easier to handle in actual calculations.
As an application, let us consider the case of HS proportional to the

Pauli matrix sz, e.g., a spin-1/2 particle in magnetic field, and LS=sx,
with the proportionality constant in the latter relation absorbed in the
definition of the coupling constants gK in (1.4). Let us study the deviation
of the state of a spin-1/2 qubit, initially in the energy eigenstate |‘P or |aP,
from pure state, by calculating TrS[r2(t)] according to (4.8). We note that
for a two-by-two density matrix, this trace can vary from 1 for pure
quantum states to the lowest value of 1/2 for maximally mixed states.

A straightforward calculation with r(0)=|‘PO‘| or |aPOa|, yields

TrS[r2(t)]=1
2 [1+e−2B 2(t)]. (4.10)

As the time increases, the function B2(t) grows monotonically from
zero. (6, 12, 24, 31) Specifically, for Ohmic dissipation, B2(t) increases quadrati-
cally for short times t < O(1/wD), then logarithmically for O(1/wD) < t <
O((/kT), and linearly for t > O((/kT). For other bath models, it need not
diverge to infinity at large times.

Both approximations, (4.8) and (4.9), make the deviation from a pure
state r(0)=|k0POk0 | apparent: r(t > 0) is obviously a mixture (integral
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over y) of pure-state projectors |k(y, t)POk(y, t)|, where, for instance for
(4.9),

k(y, t)=e−i[tHS − yB(t) LS+C(t) L
2
S] k0, (4.11)

with a somewhat different expression for (4.8).

5. THE ADIABATIC CASE

Relation (2.1) corresponds to the system’s energy conservation.
Therefore, energy flow in and out of the system is not possible, and normal
thermalization mechanisms are blocked. This ‘‘adiabatic decoherence’’ limit
thus corresponds to ‘‘pure dephasing;’’ see ref. 48.

The fact that our approximation becomes exact in this case, provides
support to the expectation that, at low temperatures, it is generally valid
beyond the cutoff time scale 1/wD, providing a reasonable evaluation of
decoherence and deviation from a pure state, as exemplified by the cal-
culation yielding (4.10), in Section 4.

With (2.1), we can select a common eigenbasis for HS and LS. Then
the distinction between the lower-case Roman and Greek indices in (3.6)
becomes irrelevant, and the sums can all be evaluated to yield

rmn(t)=e i(En − Em ) t rmn(0) D
K

TrK [e−i(MK+lm JK ) t hK e i(MK+ln JK ) t]. (5.1)

This expression was discussed in detail in our work on adiabatic decoher-
ence. (24) Specifically, for the initially thermalized bosonic heat bath case, we
have, for the absolute values of the density matrix elements,

|rmn(t)|=|rmn(0)| e−B 2(t)(lm − ln )2/4. (5.2)

The decay of the off-diagonal matrix elements thus depends of the proper-
ties of the spectral function B2(t) as the time increases. Such explicit
results (12, 24, 31–33) illustrate that for irreversibile behavior, the number of bath
modes must be infinite, with the spectral function evaluated in the conti-
nuum limit.

In summary, we have derived short-time approximations for the
density matrix and its energy-basis matrix elements. Our expressions are
quite easy to work with, because for few-qubit systems they only involve
manipulation of finite-dimensional matrices, and they will be useful in
estimating decoherence and deviation from pure states in quantum com-
puting models, including results for low temperatures.
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